

HPC WORKFLOWS USING SLURM

Machine Learning examples on Aristotle Cluster

O it.auth | Κέντρο Ηλεκτρονικής Διακυβέρνησης ΑΠΘ

1

IN THIS PRESENTATION

- Connect to Aristotle Web Interface
- Run a Jupyter Notebook on Aristotle cluster
- Submit a batch job to use additional computing resources

EXAMPLE JUPYTER NOTEBOOK

The Extreme Gradient Boosting (XGBoost) opensource library is used for this simple Regression example.

XGBoost implements machine learning algorithms under the Gradient Boosting framework.

PREPARATION FOR THIS SESSION

Please go through a Unix Command cheat sheet as the following:

https://hpc.it.auth.gr/cheat-sheet/

A few unix commands can be useful to run the examples that follow.

ACCESS ARISTOTLE HPC CLUSTER

from your browser: https://hpc.auth.gr/

Start Jupyter Server on the cluster
 Use a custom virtual enviroment on Jupyter
 Download results to your local machine

START JUPYTER SERVER Interactive Apps -> Jupyter Server

Aristotle Cluster Files
Jobs
Clusters
Interactive Apps
Files
My Interactive Sessions

... and launch!

START A NEW TERMINAL

on the Jupyter Server

Use Cp command to copy the example jupyter notebook:

\$ cp /mnt/apps/custom/jupyter/nb/xgboost_example.ipynb .

Source the prebuilt python virtual environment:

\$ source /mnt/apps/custom/python-envs/xgboost-env/bin/activat

Install the IPython kernel in this environment for your user account:

\$ python -m ipykernel install --user --name xgboost-env \
 --display "xgboost environment"

START NEW NOTEBOOK

Using the custom environment

On Jupyter menu select File -> Open to load the xboost example notebook.

EXPORT PYTHON SCRIPT At the notebook menu select: Download as -> Python (.py)

PYTHON VIRTUAL ENVIROMENT

(+ Jupyter IPython Kernel)

To create a new custom python **venv** on your account the following process can be used:

USING SLURM

to Access HPC Resources

SLURM WORKLOAD MANAGER

- Allocates and manages exclusive users access to cluster resources
- Provides a framework for job tracking and parallel job execution
 - Quick Start User Guide
 - Slurm Directives

SLURM USER COMMANDS (1)

• Submit a job to the cluster

```
$ sbatch <job_script>
```

• Show status of running and queued jobs

```
$ squeue
# Filter results for one user
$ squeue -u <username>
# Filter results for one partition
$ squeue -p <partition>
```

• Cancel a submitted job

\$ scancel

SLURM USER COMMANDS (2)

• Show status of available partitions

```
$ sinfo
$ sinfo -N --long # how node status
```

• Show resources and efficiency of completed job

```
$ seff <jobid>
```

Report job accounting information

\$ sacct

BATCH JOB EXAMPLES

EXAMPLE 1: A TEST JOB

Steps:

Create a submission script
 Submit job to Slurm
 Monitor job execution
 Get job results

Related docs:

https://hpc.it.auth.gr/jobs/serial-slurm/

EXAMPLE 1: A TEST JOB

Submission script

```
#!/bin/bash
#SBATCH --time=10:00
#SBATCH --partition=testing
echo "Hello from $(hostname)"
sleep 30
echo Bye
```

EXAMPLE 2: MORE CPUS

#!/bin/bash

- **#SBATCH** --partition=rome
- #SBATCH --time=10:00

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=16

stress --cpu \${SLURM_NTASKS} --timeout 60

CPU Efficiency: seff <jobid>

EXAMPLE 3: MORE MEMORY

Memory Per Task = Total Memory on Node / #CPUs on Node

To allocate more memory use - - mem directive:

#!/bin/bash
#SBATCH --partition=rome
#SBATCH --job-name=memory
#SBATCH --time=4:00
#SBATCH --mem=11G

./allocate-10gb

EXAMPLE 4: GPU JOBS

- Partitions:
 - gpu: 2 nodes with a NVIDIA Tesla P100
 - ampere: 1 node with 8 NVIDIA A100

```
#!/bin/bash
#SBATCH --partition=gpu
#SBATCH --gres=gpu:1
#SBATCH --cpus-per-task=20
#SBATCH --time=10:00
```

nvidia-smi

RUN XGBOOST EXAMPLE PYTHON SCRIPT

as a batch job on the cluster

#!/bin/bash

#SBATCH --job-name=xgboost-example

#SBATCH --partition=rome

#SBATCH --nodes=1

```
#SBATCH --ntasks-per-node=8
```

```
#SBATCH --time=1:00:00
```

source /mnt/apps/custom/python-envs/xgboost-env/bin/activate

python example.py

THANK YOU !!