
HPC Workflows using Slurm

Introduction to Slurm Scheduling

Working with Python on Aristotle

Vassilis Asteriou
April 2023

In this talk

Introduction to Slurm

Slurm Examples

Working with Python on Aristotle

Introduction to Slurm

HPC Scheduling

Why is scheduling needed on the “Aristotle” cluster?

1. Share finite resources among multiple users

2. Manage allocation of resources in a distributed heterogeneous

environment

3. Bookkeeping, efficieny monitoring, statistics

Slurm Workload Manager

▶ Slurm is a scheduling and workload management system for HPC

environments

▶ Functions of Slurm

1. Allocates and manages exclusive users access to cluster resources

2. Provides a framework for job tracking and parallel job execution

3. Arbitrates contention by queuing pending work

https://slurm.schedmd.com/quickstart.html

https://slurm.schedmd.com/quickstart.html

Using Slurm to Access HPC Resources

1. Users can schedule work to be executed on the cluster by submitting jobs

to Slurm .

2. Jobs submissions include a user-defined specification of the resources

required for the workload associated to the job .

3. Slurm will queue jobs and schedule them for execution when the

requested resources become available .

Slurm's Scheduling Algorithm

▶ Multifactor Priorities

1. Age: time a job has spent in queue

2. Size: quantity of resources requested (e.g. CPU cores, time)

3. Fair share: decreases per user priority proportional to recently allocated

resources

▶ Backfill Scheduling

1. Highest Priority First Scheduling

2. Start lower priority jobs only if it does not impact the expected start time of

any higher priority jobs

Links:

▶ Fair Share https://slurm.schedmd.com/fair_tree.html
▶ Backfill https://slurm.schedmd.com/sched_config.html#backfill

https://slurm.schedmd.com/fair_tree.html
https://slurm.schedmd.com/sched_config.html#backfill

Slurm's Scheduling Algorithm

Slurm Examples

Getting to know Slurm

▶ sinfo Show status of available partitions

▶ sinfo -N --long Show node status

▶ squeue Show status of running and queued jobs

▶ -u <username> Filter results for one user
▶ -p <partition> Filter results for one partition

Example 1: A test job

Steps:

1. Create a submission script

2. Submit job to Slurm

3. Monitor job execution

4. Get job results

Related docs https://hpc.it.auth.gr/jobs/serial-slurm/

https://hpc.it.auth.gr/jobs/serial-slurm/

Example 1: A test job

Submission script

#!/bin/bash

#SBATCH --time=10:00
#SBATCH --partition=testing

echo "Hello from $(hostname)"
sleep 30
echo Bye

Example 1: A test job

Job submission

1. sbatch <submission-script.sh>

2. Use man sbatch for more options

Job monitoring

1. squeue -j <jobid>

2. tail -f slurm-<jobid>.out

3. sacct -j <jobid>

Cancel jobs

1. scancel <jobid>

Example 2A: More CPU Cores

#!/bin/bash

#SBATCH --partition=testing
#SBATCH --time=10:00
#SBATCH --cpus-per-task=4

stress --cpu ${SLURM_CPUS_PER_TASK} --timeout 60

CPU Efficiency: seff <jobid>

Example 2B: MPI Parallelization

▶ Message Passing Interface (MPI) is a system for distributed parallel

application development

▶ Gromacs is a molecular dynamics simulation tool

▶ Gromacs supports MPI Parallelization and Gromacs jobs can benefit from

increasing CPU core count

▶ For scalable use cases, increasing cpu cores reduces job walltime

srun [...] launch Slurm-managed MPI process Documentation

https://hpc.it.auth.gr/applications/gromacs/

https://hpc.it.auth.gr/applications/gromacs/

Example 2B: MPI Parallelization

#!/bin/bash

#SBATCH --partition=rome
#SBATCH --time=10:00
#SBATCH --nodes=1
#SBATCH --tasks-per-node=32
#SBATCH --cpus-per-task=1

module load gcc/9.4.0-eewq4j6 openmpi/4.1.2-akxtzzl
module load gromacs/2022-47qrtrj

srun gmx_mpi mdrun -ntomp 1 -s ../benchMEM.tpr

Example 3: More Memory

Default memory allocation

▶ Proportional to number of requested cores

Example:

▶ batch partition nodes have 20 cores and 128G of RAM each

▶ a job for partition batch with 10 cores will request by default 64GB of RAM.

What happens if a job tries to use more memory than it is allocated?

Example 3: More Memory

#!/bin/bash

#SBATCH --partition=testing
#SBATCH --job-name=memory
#SBATCH --time=4:00

./allocate-10gb

Example 3: More Memory

#!/bin/bash

#SBATCH --partition=testing
#SBATCH --job-name=memory
#SBATCH --time=4:00
#SBATCH --mem=11G

./allocate-10gb

Example 4: GPU jobs

#!/bin/bash

#SBATCH --partition=gpu
#SBATCH --gres=gpu:1
#SBATCH --cpus-per-task=20
#SBATCH --time=10:00

nvidia-smi

Example 5: Allocating Licenses

▶ ANSYS Fluent is a computational fluid dynamics (CFD) tool

▶ ANSYS Fluent is one example of a licensed software available for AUTH

users

▶ A limited number of licenses are available for HPC usage.

▶ A user can request that a job be scheduled only if there are enough licenses

available

Documentation https://hpc.it.auth.gr/applications/fluent/

https://hpc.it.auth.gr/applications/fluent/

Example 5: Allocating Licenses

#!/bin/bash

#SBATCH --job-name=FLUENT-2021R1-case
#SBATCH --partition=batch
#SBATCH --ntasks-per-node=20
#SBATCH --nodes=1
#SBATCH --licenses=ansys@ansys.it.auth.gr:16
#SBATCH --time=1:00:00

module load ansys/2021R1

fluent 3ddp -g -ssh -t$SLURM_NTASKS -i elbow_journal.in

Documentation

More info

1. https://hpc.it.auth.gr/jobs/job-submission/

2. https://hpc.it.auth.gr/jobs/serial-slurm/

3. https://hpc.it.auth.gr/jobs/slurm/

https://hpc.it.auth.gr/jobs/job-submission/
https://hpc.it.auth.gr/jobs/serial-slurm/
https://hpc.it.auth.gr/jobs/slurm/

Working with Python on Aristotle

In this session

▶ Create a conda environment with PyTorch

▶ Add the environment to Jupyter server

▶ Submit a test PyTorch job on a GPU node

Conda environment

▶ Conda is an open-source package management system and environment

management system.

▶ Miniconda is a free minimal installer for conda.

▶ Miniconda3 is available on Aristotle.

module spider miniconda3 See available versions.

Environment setup 1/4

#!/bin/bash

#SBATCH --partition=gpu
#SBATCH --gres=gpu:1
#SBATCH --cpus-per-task=20
#SBATCH --time=1:30:00

Load Miniconda
module load gcc/9.4.0-eewq4j6 miniconda3
source "${CONDA_PROFILE}/conda.sh"

Environment setup 2/4

Create pytorch environment
conda create -p ./test.env pytorch==1.12.0 torchvision==0.13.0 \

torchaudio==0.12.0 cudatoolkit=11.3 \
-c pytorch

Also see https://pytorch.org/get-started/previous-versions/

https://pytorch.org/get-started/previous-versions/

Environment setup 3/4

Check if CUDA is installed properly
conda activate ./test.env

cat <<EOF | python -
import torch
print(torch.cuda.is_available())
print(torch.cuda.device_count())
EOF

Environment setup 4/4

Install additional libraries
conda install -c conda-forge jupyter matplotlib tqdm

What is Jupyter

▶ Jupyter is an open-source web application that allows you to create and

share notebooks

▶ Notebooks are documents that contain live code, equations, visualizations

and narrative text

▶ Jupyter is available on Aristotle via Open OnDemand

(https://hpc.auth.gr)

https://hpc.auth.gr

Setup environment in Jupyter

▶ Jupyter was installed in environment

▶ To add the new environment to Jupyter:

conda activate ./test.env
python -m ipykernel install \

--user --name torch-env \
--display "Torch Test Environment"

▶ Also see https://hpc.it.auth.gr/applications/jupyter/
#custom-python-virtual-environments

https://hpc.it.auth.gr/applications/jupyter/#custom-python-virtual-environments
https://hpc.it.auth.gr/applications/jupyter/#custom-python-virtual-environments

A demo

▶ PyTorch is a deep learning framework

▶ The MNIST dataset contains 60,000 training images of handwritten digits

from zero to nine and 10,000 images for testing.

▶ The MNIST digit classification problem is almost the Hello, world! of deep

learning.

This demo is from https://github.com/jiuntian/pytorch-mnist-example

https://github.com/jiuntian/pytorch-mnist-example

A demo

#!/bin/bash

#SBATCH --partition=gpu
#SBATCH --gres=gpu:1
#SBATCH --cpus-per-task=20
#SBATCH --time=10:00

module load gcc/9.4.0-eewq4j6 miniconda3
source "${CONDA_PROFILE}/conda.sh"
conda activate ../test.env

python pytorch-mnist.py

Thank you!

	Introduction to Slurm
	Slurm Examples
	Working with Python on Aristotle

